Абиотические факторы важное. Характеристика абиотических факторов среды. Абиотические условия, определяющие поле существования жизни

Абиотические факторы это свойства неживой природы, которые прямо или косвенно влияют на живые организмы. На рис. 5 (см. приложение) приведена классификация абиотических факторов. Начнем рассмотрение с климатических факторов внешней среды.

Температура является наиболее важным климатическим фактором. От нее зависит интенсивность обмена веществ организмов и их географическое распространение. Любой организм способен жить в пределах определенного диапазона температур. И хотя для разных видов организмов (эвритермных и стенотермных) эти интервалы различны, для большинства из них зона оптимальных температур, при которых жизненные функции осуществляются наиболее активно и эффективно, сравнительно невелика. Диапазон температур, в которых может существовать жизнь, составляет примерно 300 С: от 200 до +100 ЬС. Но большинство видов и большая часть активности приурочены к еще более узкому диапазону температур. Определенные организмы, особенно в стадии покоя, могут существовать по крайней мере некоторое время, при очень низких температурах. Отдельные виды микроорганизмов, главным образом бактерии и водоросли, способны жить и размножаться при температурах, близких к точке кипения. Верхний предел для бактерий горячих источников составляет 88 С, для синезеленых водорослей 80 С, а для самых устойчивых рыб и насекомых около 50 С. Как правило, верхние предельные значения фактора оказываются более критическими, чем нижние, хотя многие организмы вблизи верхних пределов диапазона толерантности функционируют более эффективно.

У водных животных диапазон толерантности к температуре обычно более узок по сравнению с наземными животными, так как диапазон колебаний температуры в воде меньше, чем на суше.

Таким образом, температура является важным и очень часто лимитирующим фактором. Температурные ритмы в значительной степени контролируют сезонную и суточную активность растений и животных.

Количество осадков и влажность основные величины, измеряемые при изучении этого фактора. Количество осадков зависит в основном от путей и характера больших перемещений воздушных масс. Например, ветры, дующие с океана, оставляют большую часть влаги на обращенных к океану склонах, в результате чего за горами остается "дождевая тень", способствующая формированию пустыни. Двигаясь в глубь суши, воздух аккумулирует некоторое количество влаги, и количество осадков опять увеличивается. Пустыни, как правило, расположены за высокими горными хребтами или вдоль тех берегов, где ветры дуют из обширных внутренних сухих районов, а не с океана, например, пустыня Нами в ЮгоЗападной Африке. Распределение осадков по временам года крайне важный лимитирующий фактор для организмов.

Влажность параметр, характеризующий содержание водяного пара в воздухе. Абсолютной влажностью называют количество водяного пара в единице объема воздуха. В связи с зависимостью количества пара, удерживаемого воздухом, от температуры и давления, введено понятие относительной влажности это отношение пара, содержащегося в воздухе, к насыщающему пару при данных температуре и давлении. Так как в природе существуют суточный ритм влажности повышение ночью и снижение днем, и колебание ее по вертикали и горизонтали, этот фактор наряду со светом и температурой играет важную роль в регулировании активности организмов. Доступный живым организмам запас поверхностной воды зависит от количества осадков в данном районе, но эти величины не всегда совпадают. Так, пользуясь подземными источниками, куда вода поступает из других районов, животные и растения могут получать больше воды, чем от поступления ее с осадками. И наоборот, дождевая вода иногда сразу же становится недоступной для организмов.

Излучение Солнца представляет собой электромагнитные волны различной длины. Оно совершенно необходимо живой природе, так как является основным внешним источником энергии. Надо иметь в виду то, что спектр электромагнитного излучения Солнца весьма широк и его частотные диапазоны различным образом воздействуют на живое вещество.

Для живого вещества важны качественные признаки света длина волны, интенсивность и продолжительность воздействия.

Ионизирующее излучение выбивает электроны из атомов и присоединяет их к другим атомам с образованием пар положительных и отрицательных ионов. Его источником служат радиоактивные вещества, содержащиеся в горных породах, кроме того, оно поступает из космоса.

Разные виды живых организмов сильно отличаются по своим способностям выдерживать большие дозы радиационного облучения. Как показывают данные большей части исследований, наиболее чувствительны к облучению быстро делящиеся клетки.

У высших растений чувствительность к ионизирующему излучению прямо пропорциональна размеру клеточного ядра, а точнее объему хромосом или содержанию ДНК.

Газовый состав атмосферы также является важным климатическим фактором. Примерно 33,5 млрд лет назад атмосфера содержала азот, аммиак, водород, метан и водяной пар, а свободный кислород в ней отсутствовал. Состав атмосферы в значительной степени определялся вулканическими газами. Изза отсутствия кислорода не существовало озонового экрана, задерживающего ультрафиолетовое излучение Солнца. С течением времени за счет абиотических процессов в атмосфере планеты стал накапливаться кислород, началось формирование озонового слоя.

Ветер способен даже изменять внешний вид растений, особенно в тех местообитаниях, например в альпийских зонах, где лимитирующее воздействие оказывают другие факторы. Экспериментально показано, что в открытых горных местообитаниях ветер лимитирует рост растений: когда построили стену, защищавшую растения от ветра, высота растений увеличилась. Большое значение имеют бури, хотя их действие сугубо локально. Ураганы и обычные ветры способны переносить животных и растения на большие расстояния и тем самым изменять состав сообществ.

Атмосферное давление, повидимому, не является лимитирующим фактором непосредственного действия, однако оно имеет прямое отношение к погоде и климату, которые оказывают непосредственное лимитирующее воздействие.

Водные условия создают своеобразную среду обитания организмов, отличающуюся от наземной прежде всего плотностью и вязкостью. Плотность воды примерно в 800 раз, а вязкость примерно в 55 раз выше, чем у воздуха. Вместе с плотностью и вязкостью важнейшими физикохимическими свойствами водной среды являются: температурная стратификация, то есть изменение температуры по глубине водного объекта и периодические изменения температуры во времени, а также прозрачность воды, определяющая световой режим под ее поверхностью: от прозрачности зависит фотосинтез зеленых и пурпурных водорослей, фитопланктона, высших растений.

Как и в атмосфере, важную роль играет газовый состав водной среды. В водных местообитаниях количество кислорода, углекислого газа и других газов, растворенных в воде и потому доступных организмам, сильно варьируется во времени. В водоемах с высоким содержанием органических веществ кислород является лимитирующим фактором первостепенной важности.

Кислотность концентрация водородных ионов (рН) тесно связана с карбонатной системой. Значение рН изменяется в диапазоне от 0 рН до 14: при рН=7 среда нейтральная, при рН<7 кислая, при рН>7 щелочная. Если кислотность не приближается к крайним значениям, то сообщества способны компенсировать изменения этого фактора толерантность сообщества к диапазону рН весьма значительна. В водах с низким рН содержится мало биогенных элементов, поэтому продуктивность здесь крайне мала.

Соленость содержание карбонатов, сульфатов, хлоридов и т.д. является еще одним значимым абиотическим фактором в водных объектах. В пресных водах солей мало, из них около 80 % приходится на карбонаты. Содержание минеральных веществ в мировом океане составляет в среднем 35 г/л. Организмы открытого океана обычно стеногалинны, тогда как организмы прибрежных солоноватых вод в общем эвригалинны. Концентрация солей в жидкостях тела и тканях большинства морских организмов изотонична концентрации солей в морской воде, так что здесь не возникает проблем с осморегуляцией.

Течение не только сильно влияет на концентрацию газов и питательных веществ, но и прямо действует как лимитирующий фактор. Многие речные растения и животные морфологически и физиологически особым образом приспособлены к сохранению своего положения в потоке: у них есть вполне определенные пределы толерантности к фактору течения.

Гидростатическое давление в океане имеет большое значение. С погружением в воду на 10 м давление возрастает на 1 атм (105 Па) . В самой глубокой части океана давление достигает 1000 атм (108 Па) . Многие животные способны переносить резкие колебания давления, особенно, если у них в теле нет свободного воздуха. В противном случае возможно развитие газовой эмболии. Высокие давления, характерные для больших глубин, как правило, угнетают процессы жизнедеятельности.

Почва.

Почвой называют слой вещества, лежащий поверх горных пород земной коры. Русский ученый естествоиспытатель Василий Васильевич Докучаев в 1870 году первым рассмотрел почву как динамическую, а не инертную среду. Он доказал, что почва постоянно изменяется и развивается, а в ее активной зоне идут химические, физические и биологические процессы. Почва формируется в результате сложного взаимодействия климата, растений, животных и микроорганизмов. В состав почвы входят четыре основных структурных компонента: минеральная основа (обычно 5060 % общего состава почвы), органическое вещество (до 10 %), воздух (1525 %) и вода (2530 %).

Минеральный скелет почвы это неорганический компонент, который образовался из материнской породы в результате ее выветривания.

Органическое вещество почвы образуется при разложении мертвых организмов, их частей и экскрементов. Не полностью разложившиеся органические остатки называются подстилкой, а конечный продукт разложения аморфное вещество, в котором уже невозможно распознать первоначальный материал, называется гумусом. Благодаря своим физическим и химическим свойствам гумус улучшает структуру почвы и ее аэрацию, а также повышает способность удерживать воду и питательные вещества.

В почве обитает множество видов растительных и животных организмов, влияющих на ее физикохимические характеристики: бактерии, водоросли, грибы или простейшие одноклеточные, черви и членистоногие. Биомасса их в различных почвах равна (кг/га): бактерий 10007000, микроскопических грибов 1001000, водорослей 100300, членистоногих 1000, червей 3501000.

Главным топографическим фактором является высота над уровнем моря. С высотой снижаются средние температуры, увеличивается суточный перепад температур, возрастают количество осадков, скорость ветра и интенсивность радиации, понижаются атмосферное давление и концентрации газов. Все эти факторы влияют на растения и животных, обуславливая вертикальную зональность.

Горные цепи могут служить климатическими барьерами. Горы служат также барьерами для распространения и миграции организмов и могут играть роль лимитирующего фактора в процессах видообразования.

Еще один топографический фактор экспозиция склона. В северном полушарии склоны, обращенные на юг, получают больше солнечного света, поэтому интенсивность света и температура здесь выше, чем на дне долин и на склонах северной экспозиции. В южном полушарии имеет место обратная ситуация.

Важным фактором рельефа является также крутизна склона. Для крутых склонов характерны быстрый дренаж и смывание почв, поэтому здесь почвы маломощные и более сухие.

Для абиотических условий справедливы все рассмотренные законы воздействия экологических факторов на живые организмы. Знание этих законов позволяет ответить на вопрос: почему в разных регионах планеты сформировались разные экосистемы? Основная причина своеобразие абиотических условий каждого региона.

Ареалы распространения и численность организмов каждого вида ограничиваются не только условиями внешней неживой среды, но и их отношениями с организмами других видов. Непосредственное живое окружение организма составляет его биотическую среду, а факторы этой среды называются биотическими. Представители каждого вида способны существовать в таком окружении, где связи с другими организмами обеспечивают им нормальные условия жизни.

Рассмотрим характерные особенности отношений различных типов.

Конкуренция является в природе наиболее всеохватывающим типом отношений, при котором две популяции или две особи в борьбе за необходимые для жизни условия воздействуют друг на друга отрицательно.

Конкуренция может быть внутривидовой и межвидовой.

Внутривидовая борьба происходит между особями одного и того же вида, межвидовая конкуренция имеет место между особями разных видов. Конкурентное взаимодействие может касаться жизненного пространства, пищи или биогенных элементов, света, места укрытия и многих других жизненно важных факторов.

Межвидовая конкуренция, независимо от того, что лежит в ее основе, может привести либо к установлению равновесия между двумя видами, либо к замене популяции одного вида популяцией другого, либо к тому, что один вид вытеснит другой в иное место или же заставит его перейти на использование иных ресурсов. Установлено, что два одинаковых в экологическом отношении и потребностях вида не могут сосуществовать в одном месте и рано или поздно один конкурент вытесняет другого. Это так называемый принцип исключения или принцип Гаузе.

Поскольку в структуре экосистемы преобладают пищевые взаимодействия, наиболее характерной формой взаимодействия видов в трофических цепях является хищничество, при котором особь одного вида, называемая хищником, питается организмами (или частями организмов) другого вида, называемого жертвой, причем хищник живет отдельно от жертвы. В таких случаях говорят, что два вида вовлечены в отношения хищник жертва.

Нейтрализм это такой тип отношений, при котором ни одна из популяций не оказывает на другую никакого влияния: никак не сказывается на росте его популяций, находящихся в равновесии, и на их плотности. В действительности бывает, однако, довольно трудно при помощи наблюдений и экспериментов в природных условиях убедиться, что два вида абсолютно независимы один от другого.

Обобщая рассмотрение форм биотических отношений, можно сделать следующие выводы:

1) отношения между живыми организмами являются одним из основных регуляторов численности и пространственного распределения организмов в природе;

2) негативные взаимодействия между организмами проявляются на начальных стадиях развития сообщества или в нарушенных природных условиях; в недавно сформировавшихся или новых ассоциациях вероятность возникновения сильных отрицательных взаимодействий больше, чем в старых ассоциациях;

3) в процессе эволюции и развития экосистем обнаруживается тенденция к уменьшению роли отрицательных взаимодействий за счет положительных, повышающих выживание взаимодействующих видов.

Все эти обстоятельства человек должен учитывать при проведении мероприятий по управлению экологическими системами и отдельными популяциями с целью использования их в своих интересах, а также предвидеть косвенные последствия, которые могут при этом иметь место.

При проведении урока используется компьютерная презентация, содержащая основные положения излагаемого материала, таблицы, примеры, иллюстрации. Заранее отдельные ученики получают задание подготовить сообщения по определенным разделам темы урока. Материалы презентации и подготовленных сообщений используются при составлении заданий проверочной работы.

Ход урока

Учитель. Все живые организмы, населяющие Землю, испытывают влияние экологических факторов среды. Экологические факторы – это отдельные свойства или элементы среды, воздействующие прямо или косвенно на живые организмы на протяжении хотя бы одной из стадий индивидуального развития. Экологические факторы многообразны. Их можно разделить по типу влияния на организмы, по степени изменчивости во времени, по длительности действия. Но обычно экологические факторы разделяют на основании их происхождения на абиотические, биотические и антропогенные.

(На экране демонстрируется схема классификации экологических факторов .)

Организмы по разному относятся к воздействию абиотических факторов. Некоторые бактерии способны жить в самых экстремальных условиях – в гейзерах, сероводородных источниках, в очень соленой воде, на самых больших глубинах Мирового океана, очень глубоко в почве, во льдах Антарктиды, в телах живых организмов. А некоторые планктонные организмы в океане погибают при самых незначительных изменениях температуры или солености окружающей воды. По-разному важны для организмов и те или иные факторы. Например, для личинки майского жука, развивающейся в почве, такой в целом важный фактор, как свет, практически не имеет значения.

Из обширного перечня абиотических факторов мы рассмотрим температуру, свет и влажность – их влияние очень важно для большинства живых организмов на планете.

Температура

Учитель. Температура на суше может меняться в разных районах земного шара от +50 °С до –50 °С, редко достигая и более высоких или низких значений, например днем в пустынях или зимой в некоторых областях Восточной Сибири, Арктики и Антарктики. Температура воды в Мировом океане как правило находится в интервале от +2 °С до +27 °С. Соответственно большинство растений и животных способны существовать в условиях довольно узкого диапазона температур. Однако отдельные виды бактерий могут жить и размножаться в горячих источниках при температуре выше +80 °С. Другие организмы способны переживать существенные изменения температуры, находясь в состоянии покоя или анабиоза. Например, споры микроорганизмов выдерживают охлаждение до –200 °С.

(На экране показаны разные группы животных в зависимости от их отношения к изменениям температуры. )

Сообщение учащегося

Различают животные организмы с постоянной температурой тела (теплокровные – птицы и млекопитающие) и с непостоянной температурой тела (холоднокровные – рыбы, земноводные, пресмыкающиеся, все беспозвоночные животные).

Для защиты от переохлаждения и перегрева организмы выработали определенные приспособления. Например, с наступлением зимы растения переходят в состояние зимнего покоя. Многие животные впадают в спячку. Интенсивность обмена веществ у них резко снижается. При подготовке к зиме в тканях животных запасается много жира, углеводов, количество воды в клетках уменьшается, накапливаются сахара, глицерин, препятствующий замерзанию. Так увеличивается морозостойкость зимующих организмов.

В жаркое время года, наоборот, включаются физиологические механизмы, защищающие от перегрева. У растений усиливается испарение влаги через устьица, что приводит к снижению температуры листьев. У животных усиливается испарение воды через дыхательную систему и кожу.

Способность к поддержанию постоянной температуры тела у птиц и млекопитающих связана с интенсивным обменом веществ, который, в свою очередь, возможен благодаря четырехкамерному сердцу и полному разделению артериального и венозного кровотоков, благодаря снабжению тканей артериальной кровью, насыщенной кислородом. От потери тепла птиц и млекопитающих защищает перьевой или волосяной покров. Те виды, которые обитают в условиях постоянно жаркого климата, имеют специальные приспособления для рассеивания тепла. Например, у слонов большая ушная раковина, которая выполняет функцию теплообменника.

Благодаря поддержанию постоянной температуры тела птицы и звери могут сохранять активность при резких перепадах температур и обитают почти во всех районах земного шара.

Свет

Учитель. Свет и связанный с ним процесс фотосинтеза, обеспечивают все жизненные процессы, протекающие на Земле. Для фотосинтеза важна длина волны воспринимаемого излучения, его продолжительность и интенсивность.

(На экране показана схема спектра солнечного света. )

Растения по отношению к свету делят на светолюбивые, тенелюбивые и теневыносливые. Тенелюбивые растения произрастают в условиях низкой освещенности, например под пологом леса. Теневыносливые способны существовать как в условиях хорошего освещения, так и при затенении.

Спонсор публикации статьи медицинский центр "ЦРЧ". Лазерная хирургия, подология - лечение вросшего ногтя , проктология, оперативная и консервативная ортопедия, ударно-волновая и мануальная терапия, массаж, рефлексотерапия, коррекция осанки и многое другое. Ваше здоровье в Ваших руках! Смотрите подробнее о центре, услугах и цены на сайте, который располагается по адресу: http://www.rubca.net/.

Сообщение учащегося

Важную роль в регуляции активности живых организмов и их развитии играет продолжительность светового дня – фотопериод . В умеренных широтах цикл развития животных и растений приурочен к сезонам года, и сигналом для подготовки организмов к изменению температуры служит именно продолжительность светового дня, которая, в отличие от других факторов, для каждого места и времени всегда постоянна. Фотопериодизм – это пусковой механизм, включающий физиологические процессы, приводящие к росту и цветению растений весной, плодоношению летом, сбрасыванию листьев осенью. У животных с изменением длины светового дня связано размножение, сезонные миграции (например, перелеты птиц), накопление жира и подготовка к стадии зимнего покоя.

Помимо сезонных, важное значение имеют и суточные изменения режима освещенности. Смена дня и ночи определяет суточный ритм физиологической активности организмов. Важное приспособление, которое обеспечивает выживание особи, – это своего рода «биологические часы», способность ощущать время.

Сообщение учащегося

Растениям свойственно явление, называемое фототропизмом , – это изменение положения частей растения в течение суток в зависимости от положения источника света. Листья растений отворачиваются от избыточного света, а у теневыносливых видов, наоборот, поворачиваются к нему. Таким образом ассимилирующие органы стараются занять положение, при котором растение будет получать оптимальное количество света.

У некоторых животных и одноклеточных организмов также наблюдается перемещение в сторону наибольшей или наименьшей освещенности (положительный или отрицательный фототаксис ) для выбора наиболее подходящего местообитания.

Сообщение учащегося

Для животных, в том числе и для человека, свет имеет в первую очередь информационное значение. Многие млекопитающие и птицы подавляющее большинство информации получают через органы зрения. Большинству организмов свет необходим для ориентации в пространстве. Уже у простейших организмов в клетках имеются чувствительные к свету органеллы. Пчелы своим танцем показывают собратьям путь полета к источнику пищи. Установлено, что фигуры танца (восьмерки) ориентированы по отношению к солнцу.

При весенне-осенних перелетах птицы ориентируются по звездам и по солнцу. В местообитаниях, где света очень мало или нет совсем (в пещерах, в глубинах океана), а иногда и при ночном образе жизни у некоторых животных (рыбы, головоногие моллюски, насекомые, ракообразные) могут иметься приспособления для биолюминесценции – способности светиться для привлечения добычи, особей противоположного пола, отпугивания врагов и т.д.

Влажность

Учитель. Вода – это необходимый компонент клетки, поэтому ее количество в тех или иных местах обитания является ограничивающим фактором для растений и животных и определяет характер флоры и фауны данной местности.

(На экране показаны представители разных групп растений с разными по влажности местообитаниями. )

В зависимости от влажности почвы меняется видовой состав растительности. По мере иссушения почв леса сменяются лесостепной растительностью, затем степью и пустынной растительностью. Избыток влаги в почве приводит к заболачиванию и появлению болотной растительности. Осадки в течение года могут выпадать неравномерно, живым организмам приходится переносить длительные засухи. Интенсивность развития растительного покрова и соответственно интенсивность питания копытных животных зависят от сезона дождей.

У растений и животных появились приспособления к обитанию в условиях дефицита воды. Например, у растений из сухих местообитаний развита мощная корневая система, утолщена кутикула листа, листовые пластинки уменьшены или превращены в иголки и колючки, что уменьшает испарение. Рост в период засухи прекращается. Кактусы и некоторые другие растения (суккуленты) запасают влагу в стеблях. В пустынях и полупустынях растения-эфемеры к началу лета, после кратковременного цветения, сбрасывают листья, у них отмирают наземные части и до следующего сезона сохраняются луковицы, корневища. Так эти растения переживают период засухи.

В пустынях и мелкие животные – членистоногие, змеи, черепахи, грызуны могут впадать в летнюю спячку, порой переходящую в зимнюю, до следующего сезона.

Сообщение учащегося

При всем многообразии форм и механизмов адаптации живых организмов к воздействию неблагоприятных факторов среды их можно сгруппировать в три основных пути: активный, пассивный и избегание неблагоприятных воздействий. Все эти пути имеют место по отношению к любому экологическому фактору, будь то свет, тепло или влажность.

Активный путь – усиление сопротивляемости, развитие регуляторных способностей, дающих возможность пройти жизненный цикл и дать потомство, несмотря на отклонения условий среды от оптимальных. Этот путь свойствен теплокровным организмам, но проявляется и у ряда высших растений (ускорение темпов нарастания и отмирания побегов, корней, быстрое цветение).

Пассивный путь – подчинение жизненных функций организма внешним условиям. Заключается в экономном использовании энергетических ресурсов при ухудшении условий жизни, повышении устойчивости клеток и тканей. Проявляется в снижении интенсивности обменных процессов, замедлении скорости роста и развития, спячке, анабиозе взрослых особей или существовании в покоящейся стадии (обезвоженные семена, споры, яйца некоторых беспозвоночных, способные сохраняться годами в самых неблагоприятных условиях). Выражен у растений и холоднокровных животных, у тех млекопитающих и птиц, которые способны впадать в спячку или оцепенение.

Избегание неблагоприятных условий среды характерно для всех живых существ. Прохождение жизненных циклов в наиболее благоприятное время года (активные процессы – в вегетационный сезон, зимой – состояние покоя). Для растений – защищенность почек возобновления и молодых тканей снежным покровом, подстилкой; отражение солнечных лучей. Для животных – убежища: норы и гнезда.

Сообщение учащегося

Многие мелкие растения переносят низкие зимние температуры, зимуя под снегом, в слое опада. Ветви кедрового стланика с наступлением морозом полегают на землю, а весной вновь поднимаются. Извилистость стволов каменных берез некоторыми исследователями тоже трактуется как адаптация вида к холоду. Извиваясь, ствол дерева еще какое-то время задерживается в более теплом приземном слое. Это имеет место как на Европейском Севере, так и на севере Дальнего Востока.

У животных тоже несколько состояний покоя. Летняя спячка – из-за высоких температур и дефицита воды, зимняя – из-за холода. Не всегда у млекопитающих во время зимнего сна замедляются обменные процессы: у бурых и белых медведей зимой рождаются детеныши. Анабиоз – состояние организма, при котором жизненные процессы настолько замедляются, что признаки жизни могут отсутствовать. Организм обезвоживается и потому может переносить очень низкие температуры. Анабиоз характерен для спор, семян, высохших лишайников, муравьев, простейших одноклеточных.

Все животные активно перемещаются в места с более благоприятными температурами (в жару – в тень, в холодные дни – на солнце), скучиваются или рассредоточиваются, во время спячки скручиваются клубком, выбирают или создают убежища с определенным микроклиматом, проявляют активность в определенное время суток.

Учитель. Приспосабливаясь к абиотическим факторам среды, вступая во взаимоотношения друг с другом, растения, животные и микроорганизмы распределяются в пространстве по различным средам, формируя самые разнообразные экосистемы (биогеоценозы), в конечном итоге объединяющиеся в биосферу Земли.

Вывод: на все живые организмы, т.е. на растения и животных действуют абиотические факторы среды (факторы неживой природы), особенно температура, свет и увлажненность. В зависимости от приспособленности к влиянию факторов неживой природы растения и животных делят на различные экологические группы.

Для закрепления полученных знаний проводится проверочная работа (5–7 мин).

Каждый учащийся получает лист с заданиями тестового типа, основанными на материале урока. После выполнения задания листы собираются.

Варианты заданий

Задание 1. Из перечисленных животных выберите теплокровных (т.е. с постоянной температурой тела) и холоднокровных: крокодил, гадюка, варан, черепаха, сазан, заяц, синица.

Задание 2. Выберите из предложенных растений светолюбивые, тенелюбивые и теневыносливые.

Ромашка, ель, одуванчик лекарственный, василек, шалфей луговой, ковыль степной, папоротник орляк.

Дополнительная информация:

1) светолюбивые – имеют мелкие листья, сильно ветвящиеся побеги, много пигмента, например хлебные злаки (увеличение интенсивности освещения сверх оптимального подавляет фотосинтез, поэтому в тропиках трудно получать хорошие урожаи);

2) тенелюбивые – листья тонкие, крупные, расположены горизонтально, с меньшим количеством устьиц;

3) теневыносливые – растения способные обитать в условиях хорошего освещения, так и в условиях затенения.

Задание 3. Выберите растения, относящиеся к:

1) водным растениям;
2) околоводным растениям;
3) наземным растениям;
4) растениям сухих и очень сухих мест.

Лютик едкий, василек, кактус, кувшинка белая, алоэ.

Какие растения называют суккулентами?

Задание 4. Выберите животных, ведущих дневной, ночной и сумеречный образ жизни.

Сова, ящерица, леопард, окапи, белый медведь, летучая мышь, бабочка.

Задание 5. Выберите животных, относящихся к:

1) влаголюбивым животным;
2) животным промежуточной группы (водно-наземной группы);
3) сухолюбивым животным.

Варан, тюлень, верблюд, пингвины, жирафы, водосвинка, белка, рыба-клоун, бобр.

ЛИТЕРАТУРА

Дольник В.Р., Козлов М.А. Млекопитающие. Атлас. – М.: Просвещение, 2005.
Иллюстрированная энциклопедия животных. – М.: ТЕРРА – Книжный клуб, 1999.
Каменский А.А., Криксунов Е.А., Пасечник В.В. Биология. Введение в общую биологию и экологию. – М.: Дрофа, 2005.
Федорос Е.И., Нечаева Г.А. Экология в экспериментах: учебное пособие для учащихся 10–11-х классов общеобразовательных учреждений. – М.: Вентана-Граф, 2007.
Федорос Е.И., Нечаева Г.А. Экология в экспериментах: практикум для учащихся 10–11-х классов общеобразовательных учреждений. – М.: Вентана-Граф, 2007.

Абиотические факторы - это все компоненты неживой природы; температура, свет, влажность и другие компоненты климата, состав водной, воздушной и почвенной среды.

Биотические факторы – взаимодействие между различными особями в популяциях, между популяциями в природных сообществах.

Интенсивность факторов, наиболее благоприятную для жизнедеятельности, называют оптимальной или оптимумом.

Оптимальное значение того или иного фактора у каждого вида различно.

Отклонение интенсивности действия фактора от оптимальных значений угнетает жизнедеятельность для организмов данного вида.

Границы за пределами которых наступает гибель организма называются верхним и нижним пределом выносливости.

Также еще выделяют ограничивающие и антропогенные факторы среды.

Биохимические механизмы адаптации животных к экстремальным температурным условиям среды

Все живые существа приспосабливаются к определенному температурному диапазону характерному для места их обитания.

Большинство жизненных процессов происходит в диапазоне температур до 0 до 60-85 градусов Цельсия. По отношению к температурным условиям организмы подразделяются на пойкилотермные и гомойотермные.

Пойкилотермные животные (холоднокровные) – температура тела меняется в зависимости от температуры внешней среды. Все беспозвоночные, из позвоночных – рыбы, земноводные и пресмыкающиеся. Температура тела на 1-2 градуса выше температуры окружающей среды или равна ей.

Главный источник поступления тепловой энергии – внешнее тепло. При повышении или понижении температуры внешней среды за пределы оптимума пойкилотермные животные впадают в оцепенение или гибнут.

Приспособления пойкилотермных животных к низким температурам: накопление в тканевой жидкости гликопротеинов (арктические рыбы) и глицерина (насекомые), препятствующих образованию кристаллов льда в организме; увеличение теплопродукции за счет активного сокращения мускулатуры; обмен тепла между сосудами кровеносной системы (холодноводные рыбы); выбор мест на солнце для обогрева или смена различных поз для увеличения поверхности обогрева (многие насекомые, рептилии и амфибии).

Приспособление пойкилотермных животных к высоким температурам окружающей среды: теплоотдача за счет испарения влаги с поверхности тела или со слизистой верхних дыхательных путей; увеличение тока крови по сосудам кожи за счет подкожной сосудистой регуляции (например, у ящериц).

Гомойотермные животные – теплокровные (птицы и млекопитающие).

Приспособления к низким температурам: физические механизмы – регуляция отдачи тепла во внешнюю среду; химические механизмы – термогенез – регуляция продукции тепла в организме.

Приспособления гомойотермных животных к высоким температурам: потоотделение и испарение воды со слизистой рта и верхних дыхательных путей (у птиц нет потовых желез и у них только последний способ); усиление теплоотдачи путем расширения кровеносных сосудов, расположенных близко к поверхности кожи (у птиц через неоперенные участки тела, например, гребень).

Адаптационные механизмы формируются и реализуются двумя путями: генотипическими и фенотипическими механизмами.

Генотипические механизмы обусловлены: действием биологических антифризов (многоатомные спирты, высокомолекулярные пептиды и гликопротеины, присутствующие в крови глюкоза, аминокислоты и соли); поддержанием определенного агрегатного состояния мембранных липидов; мутациями, приводящими к аминокислотным заменам.

Фенотипические механизмы адаптации применяются при сезонных или более кратковременных колебаниях температуры: синтез индуцированных температурой изоформ тех или иных ферментов, которые больше приспособлены к новым условиям

Само название раскрывает суть такого фактора, в переводе с греческого абиотический – неживой, безжизненный. То есть, абиотический фактор – это влияние неживой природы на окружающую среду, и . В разных уголках земного шара, грунты, температура воздуха разнятся, и это не может не сказываться на происходящих там процессах или жизненных циклах.

Классификация абиотических факторов

Различают следующие абиотические факторы, влияющие на окружающую среду:

  • климатические – вода, воздух, ветер, солнце, температура;
  • эдафические – состав воды, грунтов;
  • топографические – рельеф и высота над уровнем моря;
  • гидрографические – наличие водных ресурсов и их качество;
  • химические – атмосферный состав и водный состав.

Режимы абиотических факторов

Основное влияние на природу оказывают следующие режимы абиотических факторов на определенных участках земной поверхности:

  • температура;
  • вода;
  • влажность;
  • солнечные излучения;
  • радиация;
  • состав воздуха;
  • ветер;
  • атмосферное давление;
  • высота над уровнем моря.

Процесс влияния режимов абиотических факторов

  1. Температура – оказывает важнейшее влияние на . Благодаря температурному режиму на определенной территории развивается жизнь тех или иных живых организмов и растений. Различные представители и имеют свои комфортные условия обитания, главенствующую роль в которых играет именно температурный режим. Это правило относится как к наземным организмам, так и к водным: под водой, на разных глубинах температура воды отличается, что сказывается на ее обитателях.
  2. Влажность и вода – также главенствующий фактор в развитии жизни на планете. От количества осадков на определенной территории, зависит и количество доступных водных ресурсов: рек, озер, ручьев. Чем больше осадков на той или иной территории выпадает в течение года, тем выше запасы пресных вод и тем больше различных организмов и растений может проживать в тех регионах.
  3. Солнце и его излучение – интенсивности солнечной активности определяет продолжительность светового дня, от которого зависит много жизненных факторов живых и не живых организмов. Так по продолжительности дня животные определяют для себя сезон спаривания, линьки, набора веса перед зимой, период спячки или миграции. У растений, под действием солнца, происходит фотосинтез, цветение, сбрасывание листьев или почкование.
  4. Радиация – все живые организмы очень зависимы от радиоактивного фона. Если на той или иной территории уровень радиации повышен, неизменно появятся изменения на генетическом уровне, мутации, злокачественные новообразования, что не может не сказаться на развитии и процветании видов.
  5. Воздух и его состав – главные факторы, способствующие прохождению различных обменных процессов у организмов. Именно благодаря составу воздуха зародилась жизнь на нашей планете: из-за повышения в воздухе углекислого газа и кислорода, на Земле появились растения и животные.
  6. Ветер – как стихия сказывается как на растительном, так и животном мире. На территориях сильно продуваемых ветрами, растения боле слабые, из-за чего и там менее разнообразна. Также ветра способствуют расширению ареала распространения , перенося семена на большие расстояния.
  7. Атмосферное давление – влияет на образование тех или иных климатических условий, погоду.
  8. Высота над уровнем моря – в зависимости от топографии меняются и другие абиотические факторы: чем выше территория над уровнем моря, тем менее комфортная климатическая среда и тем менее распространен животный и растительный миры.

Факторы абиотической группы, подобно биотическим, тоже находятся в определенных взаимодействиях. Например, при отсутствии воды элементы минерального питания, находящиеся в почве, становятся недоступными растениям; высокая концентрация солей в почвенном растворе затрудняет и ограничивает поглощение растением воды; ветер усиливает испарение и, следовательно, потерю растением воды; повышенная интенсивность света связана с повышением температуры среды и самого растения. Подобного рода связей известно много, иногда при ближайшем исследовании они оказываются очень сложными.

Изучая взаимоотношения между растениями и средой, нельзя противопоставлять биотические и абиотические компоненты среды, представлять эти компоненты самостоятельными, изолированными друг от друга; наоборот, они тесно связаны, как бы взаимопроникают друг в друга.

Так, пожизненные остатки всех растений (и животных), попадая в субстрат, изменяют его (влияние биотическое), привнося, например, элементы минерального питания, находившие ся в связанном состоянии в теле организмов; за счет этих элементов (влияние абиотическое) в какой-то степени возрастает плодородие субстрата, а это отражается на количестве растительной массы, т. е. в усилении биотического компонента среды (фактор биотический). Подобный простой пример показывает, что и биотические и абиотические факторы теснейшим образом переплетаются. Таким образом, окружение каждого растения рисуется как единство, как целостное явление, называемое средой.

Абиотические факторы делят на три группы -- климатические, эдафические (по чвенно- грунтовые) и орографические (связанные со строением земной поверхности). Первые две группы объединяют факторы, непосредственно своим влиянием определяющие те или иные стороны жизнедеятельности растения. Орографические факторы в основном выступают в роли видоизменяющих влияние прямодействующих.

Среди климатических факторов важное место в жизни растений занимают свет и тепло, связанные с лучистой энергией солнца; вода; состав и движение воздуха. Атмосферное давление и еще некоторые явления, входящие в понятие климата, существенного значения в жизни и распределении растений не имеют.

Свет и тепло поступают на Землю от Солнца. Энергетический поток, проходя через атмосферу, ослабляется, причем наиболее ослабевает ультрафиолетовый участок спектра. Ослабление потока солнечной энергии зависит от толщи атмосферы, которую проходят солнечные лучи, а следовательно, от географической широты, сезона и времени суток. Очень важно иметь в виду, что количество энергии, получаемое единицей земной поверхности, зависит от угла наклона поверхности, воспринимающей энергетический поток. Расчеты показывают, что на широте Ленинграда (60° с. ш.) южный склон крутизной 20° получает несколько большее количество солнечной радиации, чем горизонтальная поверхность на широте Харькова (50° с. ш.). В то же время на широте Харькова северный склон, имеющий крутизну 10°, получает меньшее количество солнечной радиации, чем горизонтальная поверхность на широте Ленинграда.

Поток энергии, достигающий твердой и водной оболочек Земли (литосферы и гидросферы), качественно отличен от того, который вступает в верхние разреженные слои атмосферы. От всей ультрафиолетовой радиации на земную поверхность попадают только сотые и тысячные доли калорий на 1 см2 в минуту, и здесь вовсе не обнаруживаются лучи с длиной волны 2800 --2900 А, в то время как на высоте 50-- 100 км ультрафиолетовая радиация содержит еще весь диапазон волн, включая и самые короткие.

Лучи с длиной волны, от 3200 до 7800 А, охватывающие видимую (человеком) часть спектра, составляют лишь небольшую часть потока солнечной энергии, достигшей поверхности Земли.